How to predict future stock using lstm keras?

How to predict future stock using lstm keras?

Facebook Twitter LinkedIn Telegram Whatsapp

1 answer

Member

by olen , a year ago

@london_lueilwitz 

To predict future stock prices using LSTM (Long Short-Term Memory) in Keras, you can follow the steps outlined below:

  1. Import the required libraries:
1
2
3
4
5
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import LSTM, Dropout, Dense
from sklearn.preprocessing import MinMaxScaler


  1. Load and preprocess the stock price data:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
# Load the stock price data
df = pd.read_csv('stock_prices.csv')

# Select only the date and closing price columns
df = df[['date', 'close']]

# Normalize the closing prices between 0 and 1
scaler = MinMaxScaler(feature_range=(0, 1))
df['close'] = scaler.fit_transform(df['close'].values.reshape(-1, 1))

# Split the data into training and testing sets
train_size = int(len(df) * 0.8)
train_data = df.iloc[:train_size, :]
test_data = df.iloc[train_size:, :]


  1. Prepare the data for LSTM training:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
def create_lstm_dataset(dataset, time_step):
    data_X, data_Y = [], []
    for i in range(len(dataset) - time_step):
        data_X.append(dataset[i:(i + time_step), 0])
        data_Y.append(dataset[i + time_step, 0])
    return np.array(data_X), np.array(data_Y)

# Convert the training and testing data into LSTM datasets
time_step = 60
X_train, y_train = create_lstm_dataset(train_data.values, time_step)
X_test, y_test = create_lstm_dataset(test_data.values, time_step)

# Reshape the input data for LSTM
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))


  1. Build and train the LSTM model:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units=1))

model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(X_train, y_train, epochs=50, batch_size=32)


  1. Make predictions using the trained model:
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# Predict the stock prices for the test data
predictions = model.predict(X_test)
predictions = scaler.inverse_transform(predictions)

# Compare the predicted prices with the actual prices
actual_prices = scaler.inverse_transform(test_data['close'].values.reshape(-1, 1))

# Calculate the root mean squared error (RMSE)
rmse = np.sqrt(np.mean((predictions - actual_prices)**2))
print('RMSE:', rmse)


This LSTM model can be used to predict future stock prices by feeding new input data and obtaining predictions from the model.